Suites - Séries - Sequences
PAGES WEB
suites de Somos, d'Ulam ...
<http://perso.wanadoo.fr/jean-paul.davalan/mots/suites/index.html>
<http://www.research.att.com/~njas/sequences/index.html>
<http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibrab.html#rab>
<http://www.mathsoft.com/asolve/constant/cntfrc/cntfrc.html>
<http://www.calvin.edu/~avtuyl52/confrac/index.html>
<http://www.hoxie.org/math/expansion/power2.htm>
(Click
here for a Postscript version of this page.)
This site is dedicated to mathematical, historical and algorithmic aspects of some classical mathematical constants (like p, e, the Euler constant g, z(3), ¼). A few results on prime numbers are added. Easy and fast programs are also included and can be downloaded.
<http://numbers.computation.free.fr/Constants/Miscellaneous/seriesacceleration.html>
Matthew M. Conroy
<http://www.madandmoonly.com/doctormatt/mathematics/mathematics.htm>
PROJETS - PROJECTS
Simon Colton
NumbersWithNames is a program for exploring some of the sequences in the Encylopedia of Integer Sequences
<http://www.machine-creativity.com/programs/nwn/>
PROBLÈMES - PROBLEMS
Starting this procedure at an integer n gives the Goodstein sequence {Gk(n)}. Amazingly, despite the apparent rapid increase in the terms of the sequence, Goodstein's theorem states that Gk(n) is 0 for any n and any sufficiently large k.
<http://mathworld.wolfram.com/GoodsteinSequence.html>
Problem of the Month (August 2000), Math Magic
<http://www.stetson.edu/~efriedma/mathmagic/0800.html>
EXEMPLES - EXAMPLES
Dr. Paul A. Loomis
homepage
<http://facstaff.bloomu.edu/ploomis/sequences.html>
Jean-Paul Davalan
<http://perso.wanadoo.fr/jean-paul.davalan/mots/suites/index.html>
JAVA
Joël Amblard
Toutes ces applets ont été réalisées automatiquement avec le grapheur
Edugraphe
Edugraphe est un grapheur disponible gratuitement pour tous les systèmes (macosx, linux, windows ...) et distribué sous licence GPL. Convivial et simple d'utilisation, il est particulièrement adapté aux programmes de mathématiques du secondaire et permet de créer des applets java directement exploitables en cours.
<http://perso.wanadoo.fr/joel.amblard/applets/index.html>
JAVASCRIPT
Jean-Paul Davalan
Suites de Fibonacci, de Lucas, de Perrin, de Padovan. Nombre d'or, nombre plastique.
<http://perso.wanadoo.fr/jean-paul.davalan/mots/suites/edf/index.html>
Jean-Paul Davalan
<http://perso.wanadoo.fr/jean-paul.davalan/mots/suites/somos/index.html>
THÈSES - THESIS
Field medalist Paul J. Cohen's 1958 Ph.D. thesis
This work was previously only available at the University of Chicago library. Though Paul Cohen is best known for his groundbreaking work in set theory, he also had many important contributions in harmonic analysis starting with his thesis which is still relevant to current research in this area. I have included a brief summary and bibliography of subsequent work in this area
<http://www.lix.polytechnique.fr/Labo/Ilan.Vardi/cohen.ps>
Abdelkader Necer Limoges 1998
<http://www.unilim.fr/laco/theses/1998/T1998_05.pdf>
SUJETS - SUBJECTS
Farouk Boucekkine
CultureMATHAccompagnement et Culture Mathématiques
<http://www.dma.ens.fr/culturemath/maths/pdf/combi/seriesFormelles.pdf>
DOCUMENTS - PAPERS
par Denis Monasse, Lycée Louis le Grand, Paris 13 mai 1999
(NDLR Cet article de 22 pages en français vous permet d'aborder bien plus facilement la lecture du livre A=B ci-dessous qui est en anglais et qui a 222 pages)
<http://denis.monasse.free.fr/denis/articles/celine.pdf>
by Marko Petkovsek, Herbert Wilf and Doron Zeilberger with a Foreword by Donald E. Knuth
"A=B" is about identities in general, and hypergeometric identities in particular, with emphasis on computer methods of discovery and proof. The book describes a number of algorithms for doing these tasks, and we intend to maintain the latest versions of the programs that carry out these algorithms on this page. So be sure to consult this page from time to time, and help yourself to the latest versions of the programs.
<http://www.math.upenn.edu/~wilf/AeqB.html>
Simon Plouffe LACIM Université du Québec à Montréal Mars 1993
<http://lacim.uqam.ca/~plouffe/articles/FlorencealgebraicLLL.pdf>
Beeler, M., Gosper, R.W., and Schroeppel, R. HAKMEM. MIT AI Memo 239, Feb. 29, 1972. Retyped and converted to html ('Web browser format) by Henry Baker, April, 1995.
<http://www.inwap.com/pdp10/hbaker/hakmem/cf.html>
R. P. Brent
We give a simple condition for a linear recurrence (mod 2w) of degree r to have the maximal possible period 2w-1(2r-1). It follows that the period is maximal in the cases of interest for pseudo-random number generation, i.e. for 3-term linear recurrences defined by trinomials which are primitive (mod 2) and of degree r > 2. We consider the enumeration of certain exceptional polynomials which do not give maximal period, and list all such polynomials of degree less than 15.
<http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub133.html>
SFI Research Professor Cork Constraint Computation Centre University Ireland
<http://4c.ucc.ie/~tw/>
TUTORIELS - TUTORIALS - TUTORS
Gilles HUNAULT
<http://www.info.univ-angers.fr/pub/gh/cours_gH/euris.html>
<http://www.seanet.com/~ksbrown/iprobabi.htm>
Peter J. Cameron
<http://www.research.att.com/~njas/sequences/JIS/VOL3/groups.html>
BIOGRAPHIES
<http://www-lipn.univ-paris13.fr/~banderier/Papers/delannoy2004.ps>
ARTS
By Jørgen Mortensen
Per Nørgård discovered his infinity series in 1959, and throughout the years it has had a tremendous influence on his compositions.
<http://www.pernoergaard.dk/eng/strukturer/uendelig/uintro.html>
ARCHIVES
<http://www.stetson.edu/~efriedma/mathmagic/archive.html>
LIENS - LINKS
<liens_math.html>