logo pages de liens

Votre portail e-Learning
ENSup. et Minist. EN
Séminaire MaMuX
Mathématiques, musique et relations avec d'autres disciplines


Problèmes & Conjectures

Bas de page


<http://pass.maths.org.uk/issue3/xfile/index.html> <http://www.numbertheory.org/interests.html> <http://www8.pair.com/mnajtiv/> <http://www.its.caltech.edu/~zare/prob_all.html>
Coloring - Hoffman-Singleton packing - Seymour's 2nd Neighborhood Conjecture - Sumner's Universal Tournament Conjecture - Caccetta-H?ggkvist Conjecture - Zhang's Hamiltonian weight conjecture - Bermond's Conjecture - Induced forests in planar graphs - cyclic edge-connectivity of planar graphs - Tutte's 3-flow Conjecture (& 4 5) - etc.
<http://www.math.uiuc.edu/~west/openp/> <http://dmoz.org/Science/Math/Combinatorics/Graph_Theory/Open_Problems/> <http://www.students.uiuc.edu/~p-kwok/bounty.html> <http://www.statslab.cam.ac.uk/~rrw1/research/unsolved.html>
Wall's k - The 4-move - The Grid Conjecture - The additivity issue - The X-moves
<http://guests.mpim-bonn.mpg.de/askitas/doc/conj.html> <http://www.math.utah.edu/~alfeld/math/conjectures.html>
Top Ten Contributions  to Mathematics of the 20th Century
<http://www.cst.cmich.edu/units/mth/ttm2k/topten.htm> <http://dir.clubs.yahoo.com/Science/Mathematics/>
P versus NP, The Hodge Conjecture, The Riemann Hypothesis, Yang-Mills Existence and Mass Gap, Navier-Stokes Existence and Smoothness, The Birch and Swinnerton-Dyer Conjecture
There are three levels of problems: High School, Advanced, and Challenge.
<http://math.smsu.edu/~les/POTW.html> <http://www.ecst.csuchico.edu/~kend/potw/index.html> <http://www.stetson.edu/~efriedma/mathmagic/> <http://www.research.ibm.com/features/ponder/>
Purdue University
University of Mississippi's School of Education
<http://mathcontest.olemiss.edu/currentproblems.php> <http://mathforum.org/wagon/> <http://www.pleacher.com/mp/probweek/> <http://forum.swarthmore.edu/geopow/>
Some Research Problems in Commutative Algebra
Flows on Graphs, Choosability for Ax=y, Edge-Decompositions of Graphs, Other Problems
From the SIAM Activity Group Newsletter in Discrete Mathematics
<http://www.math.uiuc.edu/~west/pcol/pcolink.html> <http://www.imada.sdu.dk/Research/Graphcol/> <http://www.uwinnipeg.ca/~martin/RESEARCH/open.html>
These problems and conjectures concern the determination of properties of families of graphs.
Workshop on Satisfiability 1996
<http://www.ehis.navy.mil/franco.htm#open> <http://algo.inria.fr/AofA/Problems/index.html>
Wikipedia :  Clay Mathematics Institute
The institute is best know for its establishment on May 24, 2000 of the Millennium Prize Problems.
Marek KORDOS Institute of Mathematics, Warsaw University
Stefan Banach was the first to enter a problem to the Book on July 17 of 1935. The last problem, problem 193, was due to Hugo Steinhaus and it bears the date of May 31, 1941. The total number of problems was actually greater than 193, since the numeration used to be repetitive. For instance, there was problem number 10.1, 15.1 or 17.1. Most problems have been solved, though not all of them. In some cases the solution was not a mere intellectual exercise or sport, for it marked the beginning of a new direction of research.
Venn Diagram Survey Frank Ruskey
This is a collection of open problems in Discrete Mathematics which are currently being researched by members of the DIMACS community. These problems are easily stated, require little mathematical background, and may readily be understood and worked on by anyone who is eager to think about interesting and unsolved mathematical problems.
Erwin Lutwak
<http://camel.math.ca/CMS/Events/summer98/s98-abs/node10.html#SECTION00043000000000000000> <http://www.math.fau.edu/locke/unsolved.htm> <http://www.maths.qmw.ac.uk/~pjc/permgps/permutations.html>
Heiko Stamer
This theoretical computer sience problem was published 1946 by Emil Post in Bulletins of the American Math. Society -- Vol. 53. He proved the undeciablility for the general case and hence for the first time introduced a concrete combinatorial puzzle, which was not recursive solvable in the Turing computational model.
Overview of  "Mathematician's Secret Room"
-- Challenges to the Unsolved Problems in Number Theory --
Hisanori Mishima
Jean-Éric Pin 1. Cerny's conjecture 2. The star-height problem 3. A Schreier formula for the free monoid 4. Concatenation hierarchies
Here are some problems I tried but could not solve. They reflect only my personal taste and (lack of) mathematical abilities. I tried to avoid well-known questions here, so, despite I spent a lot of time on, say, the two-weight problem for the Hilbert transform (with very limited success), I'm not putting the corresponding question here: it is very well known without my advertising it on my web page. At last, keep in mind that this page is permanently under construction.
<http://www.math.wisc.edu/~nazarov/unsolved.html> <http://www.imaph.tu-bs.de/home/werner/problems.html> <http://www.imaph.tu-bs.de/qi/problems/problems.html>



This is the memorial site for Gian-Carlo Rota, 1932-1999.
Ten unsolvable problem by Gian-Carlo Rota
This site is maintained by Bill Chen of the Combinatorics Net



A $7 million offer has created a buzz in the esoteric world of maths. Anjana Ahuja reports



This is my current "Most Wanted" list of elementary unsolved
The "Erdos-Strauss conjecture" (ESC) is the statement that for any integer n > 1 there are integers a, b, and c with 4/n = 1/a + 1/b + 1/c, a > 0, b > 0, c > 0.
Problems & Puzzles: Puzzles
is an old unsolved problem in number theory.
<http://www.cecm.sfu.ca/projects/IntegerRelations/fpsac97/node14.html> <http://www.nadn.navy.mil/Users/math/tsm/Resources/WhatComb/Table.html>
M.M.Sheremeta O.B.Skaskiv M.O.Ghirnyk
<http://www.franko.lviv.ua/faculty/mechmat/Departments/Tf_p/Openproblems.htm> <http://www.cs.uidaho.edu/~casey931/mega-math/gloss/math/openpr.html> <http://www.matem.unam.mx/~urrutia/openprob/>
This page lists a variety of questions in combinatorics that I believe are open questions and to which I would be interested in knowing the answer.
Open Problems in Combinatorics
Zsolt Tuza May 2001 BRICS
The sum of the proper divisors is i(n) = sigma(n) - n
...This was first published by the Belgian mathematician Eugène Catalan in the year 1888. Leonard Eugene Dickson extended the so called Catalan conjecture: "Each aliquot sequence ends in a prime, in a perfect number or in an aliquot cycle"...
Discussion of open problems in mathematical logic
Community Interest Recursion Theory Set Theory Model Theory Proof Theory






Jean-Paul Davalan
Recherches de sous-chaînes du mot infini de Kolakoski K = 121121221221121122121121221121121221221121 qui est autodescriptif. Quelques problèmes ouverts (formule close, sous-chaînes ...)



<http://www.cs.unb.ca/~alopez-o/math-faq/mathtext/node26.html> <http://www.cs.unb.ca/~alopez-o/math-faq/mathtext/node30.html>
Daniel A. Klain Department of Mathematical Sciences University of Massachusetts









Erich Friedman



The Sci.Math FAQ Team. Editor: Alex López-Ortiz



<liens_math.html> <http://www.rzuser.uni-heidelberg.de/~hb3/prep.html>
Lesson Plans for Teachers  Bachelor of Arts in Educational Studies=
<http://www.onlinebachelordegreeprograms.com/resources/bachelor-of-arts-in-educational-studies-lesson-plans-for-teachers/> <http://math.uww.edu/mathlink/puzprob.htm> <http://instruction.blackhawk.edu/jbellman/puzprob.htm>

 haut de page

Advertising :   If you see a reference in one of the files that is not linked, and you know of a link address to the appropriate document, please send me mail, and I will include the link in the document. Thanks very much in advance.
Avertissement :    Le classement par catégories est approximatif. Certains liens se retrouvent dans des rubriques différentes et sur plusieurs pages. Les commentaires sont généralement des courts extraits des pages référencées. Il est possible que certains liens nécessitent une mise à jour.
Tous commentaires ou remarques sont les bienvenus, vous pouvez les adresser à :

Les mises à jour demandées sont réalisées dès que possible et, sauf si c'est nécessaire, aucun message de réponse n'est expédié. Merci de m'écrire.

Copyright © 1999-2012 Jean-Paul Davalan - Reproduction interdite.