Chaïtin
PAGES WEB
<http://www.umcs.maine.edu/~chaitin/>
Nelson Minar
On Tuesday, April 10, 1995, 10AM-3PM, Greg Chaitin will give an informal workshop at SFI on the details behind his recent talk "A New Version of Algorithmic Information Theory". This page is a set of collected notes on how to access the background material: the workshop will be working through some of the material in his book "The Limits of Mathematics"
with: The Limits of Mathematics. The lisp interpreter and sample lisp.
<http://www.santafe.edu/~nelson/chaitin-workshop/>
New Scientist magazine, 10 March 2001
He shattered mathematics with a single number. And that was just for starters, says Marcus Chown
<http://www.dc.uba.ar/people/profesores/becher/ns.html>
PAGES PERSONNELLES - HOME PAGES
<http://www.umcs.maine.edu/~chaitin/>
<http://www.cs.auckland.ac.nz/~cristian/>
LIVRES - BOOKS
<http://public.logica.com/~stepneys/bib/nf/c/chaitin.htm>
DOCUMENTS - PAPERS
The Limits of Reason; Scientific American Magazine; March 2006; by Gregory Chaitin; 8 Page(s)
<http://www.umcs.maine.edu/~chaitin/>
<http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:math/0303352>
<http://www.umcs.maine.edu/~chaitin/unm2.html>
Tien D Kieu
<http://www.arxiv.org/abs/quant-ph/0111062>
Cristian S. Calude
Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-theoretic approach to randomness and recent developments in quantum computing.
<http://www.arxiv.org/abs/quant-ph/0111118>
Cristian S. Calude, Boris Pavlov
Is there any hope for quantum computing to challenge the Turing barrier, i.e. to solve an undecidable problem, to compute an uncomputable function? According to Feynman's '82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions.
<http://www.arxiv.org/abs/quant-ph/0112087>
M. A. Man'ko, V. I. Man'ko, R. Vilela Mendes
<http://www.arxiv.org/abs/quant-ph/0104023>
Joseph S. Miller and André Nies
<http://www.cs.auckland.ac.nz/~nies/papers/questions.pdf>
Cristian S. Calude, Michael J. Dinneen, and Chi-Kou Shu. "Computing a Glimpse of Randomness," Experimental Mathematics, Vol. 11 (2002), No. 3.
the first digits of Chaitin's Omega number
<http://www.expmath.org/expmath/volumes/11/11.3/Calude361_370.pdf>
LIENS - LINKS
<liens_math.html>
<liens_set.html>
<liens_logic.html>
Advertising :
If you see a reference in one of the files that is not linked, and you know of a link address to the appropriate document,
please send me mail, and I will include the link in the document. Thanks very much in advance.
Avertissement :
Le classement par catégories est approximatif. Certains liens se retrouvent dans des rubriques différentes
et sur plusieurs pages.
Les commentaires sont généralement des courts extraits des pages référencées.
Il est possible que certains liens nécessitent une mise à jour.
Tous commentaires ou remarques sont les bienvenus, vous pouvez les adresser à :
Les mises à jour demandées sont réalisées dès que possible et,
sauf si c'est nécessaire, aucun message de réponse n'est expédié.
Merci de m'écrire.
Copyright © 1999-2012 Jean-Paul Davalan - Reproduction interdite.